

PRECLINICAL PHARMACOKINETICS AND PHARMACODYNAMICS OF DISC-0998, A HUMANIZED ANTI-HEMOJUVELIN (HJV) MONOCLONAL ANTIBODY TO SUPPRESS THE PRODUCTION OF HEPCIDIN

INTRODUCTION

Anemia of inflammation (Al) is an immune-driven disorder that displays reduced erythropoietic activity and dysregulation of iron homeostasis. It is associated with a number of underlying diseases, including myelofibrosis (MF) and chronic kidney disease (CKD), and caused by inflammatory cytokine-driven increases in hepcidin levels. Increased hepcidin causes to sequestration of iron in macrophages, decreased iron absorption, and decreased serum iron, which leads to iron-restricted erythropoiesis and anemia.¹

DISC-0974, a monoclonal antibody (mAb) targeting hemojuvelin (HJV), which positively regulates hepcidin, has been recently evaluated in a Phase 1 clinical study in healthy volunteers. Administration of DISC-0974 has resulted in suppression of hepcidin and increases in serum iron, with the overall PK/PD profile supporting monthly subcutaneous dosing.²

DISC-0998 is a potent and highly selective HJV mAb engineered with the mutation combination of T250Q/M429L (QL-mutation) in the Fc region, which aimed to alter binding to the FcRn receptor and increase PK half-life. Preclinical studies have demonstrated that DISC-0998 has biological activity, low immunogenicity potential, and desirable pharmacokinetic (PK) and pharmacodynamic (PD) properties.

OBJECTIVES

To evaluate the PK/PD relationships of DISC-0998 with hepcidin, serum iron, and transferrin saturation (TSAT) in male cynomolgus monkeys to inform drug development strategy.

METHOD

Male cynomolgus monkeys (n = 3 per group) were randomized to different dose groups and received single 0.1, 0.3, 1.0, and 3.0 mg/kg subcutaneous (SC), or 6 mg/kg intravenous (IV) doses of DISC-0998, or 0.3 and 1.0 mg/kg subcutaneous (SC) or 6 mg/kg intravenous (IV) doses of DISC-0974. Blood samples were obtained at predefined time points for PK, hepcidin-25, serum iron, and total iron binding capacity (TIBC) measurements. Concentrations of serum hepcidin-25 were analyzed using a qualified LC-MS/MS method. Concentrations of serum iron and TIBC were analyzed using a HITACHI7180 Chemistry Analyzer. Serum DISC-0998 concentrations were analyzed using a qualified MesoScale Discovery (MSD) method.

WinNonlin (PhoenixTM, version8.1) was used for PK/PD calculations.

The PK/PD relationship was investigated using an Emax model.

onc.	1000.0
erum c SD)	100.0
-0974 s mean±	10.0
g/mL) (1.0
n)	0.1
DIS	0.0

0998 SC (mpk) in monkey	C _{max} (ug/mL)	T _{1/2} (days)	CL/F (mL/hr/kg)	AUC _{0-1464hr} (hr*ug/mL)
0.1	0.878	3.6	0.830	114
0.3	3.46	4.0	0.440	675
1.0	13.5	6.3	0.230	4344
3.0	43.3	10.9	0.140	20630

IV @ 6 mpk in monkey	CL (mL/hr/kg)	V _{dss} (mL/kg)	T _{1/2} (days)	AUC _{0-1464hr} (hr*ug/mL)
0998	0.14	61.5	12.9	41989
0974	0.21	38.9	5.5	29214

DISC-0998 demonstrated a favorable PK/PD profile in monkey, allowing prediction of its PK/PD profile in humans. This, along with its extended duration of PD responses, supports further development of DISC-0998 for disorders related to anemia of inflammation, with the potential for less frequent dosing compared to DISC-0974.

Yue Chen, MS, Will Savage, MD, Ph.D., Rajiv Panwar, PhD, Richard Rodriguez, MS, Min Wu, PhD, John Quisel, JD, Ph.D. and Hua Yang, PhD Disc Medicine, Watertown, MA

RESULTS

	50	3
Ш	45	
seri	40	
ıL) in	35	
m/g	30	
nc. (r	25	
1 COL	20	5
cidir	15	3
Нер	10	1
	5	
	0	16
		~

Following single SC or IV dose, DISC-0998 exhibited low clearance (SC CL/F 0.14 – 0.83 mL/hr/kg, IV CL 0.14 mL/hr/kg), small volume of distribution (Vz 50 -104) mL/kg), and nonlinear PK as expected for a mAb.

• Compared to DISC-0974, DISC-0998 clearance was 33% lower, and half-life (t1/2) was over 2 times longer.

CONCLUSIONS

1. Kovac S, Böser P, Cui Y, et al. Anti-hemojuvelin antibody corrects anemia caused by inappropriately high hepcidin levels. Haematologica. 2016 May;101(5): e173-6.

REFERENCES

2. N. Novikov, H. Yang, S. Nguyen, A. Buch, S. Tuller, M. Andruk, K. Chan, M. Wu, R. Rodriguez, R. Panwar, H. Howell, B. MacDonald, and W. Savage. 27th EHA Annual Congress 2022, EHA-1434

DISC-0974	Estimate	SD	CV%
max (hr*ug/dL)	264521	22957	9
C50 (hr*ug/mL)	3918	1353	35
EO (hr*ug/dL)	152928	15771	10

DISC-0998	Estimate	SD	CV%
Emax (hr*ug/dL)	198621	8219	4
IC50 (hr*ug/mL)	1495	181	12
JEO (hr*ug/dL)	156094	7738	5
Gamma	1.99	0.22	11

CONTACT INFORMATION

Hua Yang, PhD, Vice President of Non-Clinical Development, Disc Medicine hyang@discmedicine.com