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Anti-repulsive Guidance Molecule C (RGMc) Antibodies Increases Serum Iron
in Rats and Cynomolgus Monkeys by Hepcidin Downregulation
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Abstract. High levels of hepcidin, the main regulator of systemic iron metabolism, lead to various
diseases. Targeting hepcidin and lowering its concentration is a possible form of intervention in order to
treat these diseases. High turnover rate of hepcidin is a major drawback of therapies directly targeting
this peptide. We developed two monoclonal antibodies ABT-207 and h5F9-AM8 which inhibit
hemojuvelin/repulsive guidance molecule C (RGMc) and downregulate hepcidin. We conducted single-
application and dose response studies to understand the antibodies’ mechanism and subchronic
toxicology studies to exclude safety-related concerns. Investigation was carried out at different biological
levels through qPCR, Affymetrix, liquid chromatography coupled with mass spectrometry (LC-MS/MS),
histopathology, serum iron, unsaturated iron binding capacity (UIBC), and drug concentration
measurements. After a single application of these antibodies, hepcidin expression in liver and its serum
protein levels were reduced. Serum iron increased for several weeks. The RGMc antibodies show a
pronounced dose response relationship in rats with h5F9-AM8 having an IC50 (UIBC) of approximately
80-fold higher than ABT-207. When hepcidin levels were downregulated, iron deposition in the liver was
visible histologically 1 week post application. These antibody-mediated iron depositions were not
associated with any adverse toxicologically relevant effect at the doses and time points evaluated. Iron
depositions seen after 14 weekly treatments with ABT-207 were reversible in rats and in cynomolgus
monkeys. Due to their long-lasting effects and excellent safety profile, both RGMc-blocking antibodies
ABT-207 and h5F9-AM8 are favorable clinical candidates for diseases characterized by high serum
hepcidin levels like anemia of chronic disease.
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INTRODUCTION

Anemia of chronic disease (ACD), also known as
anemia of inflammation, is the most common anemia in
hospitalized patients (1). ACD’s pathogenesis starts with an
inflammatory response which is accompanied by inflammato-
ry cytokine release mediating disease progression. The
cytokines reduce production of erythrocytes, facilitate lysis
of erythrocytes, and stimulate macrophages to store and
retain iron as ferritin which ultimately leads to insufficient
iron availability (2). In addition, interleukin-6 stimulates

hepatic hepcidin expression and hepcidin in turn induces
degradation of ferroportin thereby blocking iron release from
macrophages and enterocytes into the circulation (3).

Hepcidin is the master regulator of systemic iron
metabolism. It is synthesized in the liver and the synthesis is
controlled by repulsive guidance molecule C (RGMc), a
glycosyl-phosphatidylinositol (GPI)-linked glycoprotein (aka
hemojuvelin) (4). RGMc has been shown to bind to
neogenin, an ubiquitously expressed transmembrane protein
with numerous functions (5), and to bone morphogenetic
protein 6 (BMP6). RGMc- and neogenin-deficient mice show
a decreased BMP signaling pathway and as a consequence
reduced liver hepcidin expression (6, 7) suggesting that they
jointly regulated the BMP/Smad-mediated signaling pathway
of hepcidin regulation (8).

Due to the increased serum hepcidin levels in ACD,
many strategies target hepcidin to reduce its serum levels to
prevent ferroportin degradation (9, 10). This enables
ferroportin-induced iron to be exported out of the cell. Free
iron released by ferroportin will be bound to transferrin in the
serum which would then be accessible to consumer cells. Due
to hepcidin’s high turnover rate with an estimated production
rate of 7.6 nmol kg−1 h−1 and a half-life of 2.3 min in
cynomolgus monkeys (11), inhibition of hepcidin can only be
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achieved by sustaining high dose levels or frequent dosing of
anti-hepcidin antibodies.

ABT-207 and h5F9-AM8 are humanized monoclonal
antibodies (mAbs) developed at AbbVie. As previously report-
ed, these mAbs possess mid (ABT-207) and high (h5F9-AM8)
binding affinity towards repulsive guidance molecule A
(RGMa) (Demicheva et al. in press Cell Reports 2015) and
RGMc. RGMa shares 47% amino acid identity with RGMc (12)
and RGMc is conserved in rat, in monkey, and in human (13).
Since the rat RGMc protein is responsive to a humanized
antibody, most of the animal work was conducted in rats.

Here, we describe these RGMa/c antibodies in detail.
RGMc is a crucial constituent of the neogenin-BMP6-BMP
receptor complex most important for regulating hepcidin
expression. Since both antibodies have long-lasting effects on
hepcidin expression, the challenge of high hepcidin turnover
rates could be overcome, making these antibodies suitable
clinical candidates for the treatment of ACD.

In the first step to characterize these antibodies, we carried
out single-dose studies with ABT-207 and h5F9-AM8 in rats to
understand time-course and duration of effects on iron metab-
olism. These studies were followed by dose response studies to
establish the relationship between the dose of mAbs and the
monitored iron metabolism effect. Since these antibodies are
potential clinical drug candidates, hepatic microarray analysis
and toxicology studies in two species were performed to analyze
safety-related concerns. With all these studies, we could
determine the no effect level (NOEL) for both mAbs and we
could also demonstrate that both these mAbs are well tolerated.
In addition, in vitro and in vivo pharmacokinetics and pharma-
codynamics (PK/PD) relationship between ABT-207 and h5F9-
AM8 could be established.

METHODS

Generation of ABT-207 and h5F9-AM8. ABT-207 is a
monoclonal antibody (mAb) humanized from a rat hybrid-
oma mAb 5F9. h5F9-AM8 is an antibody affinity-matured
from ABT-207 by yeast surface display. Both ABT-207 and
h5F9-AM8 bind to human, cynomolgus monkeys, rat, and
mouse RGMc. They also cross-react with RGMa, another
member of the RGM family. However, the observed effect on
hepcidin and iron metabolism is associated with RGMc but
not RGMa, since an RGMa-specific mAb with no RGMc
cross-reactivity failed to show any effect on iron metabolism
(data not shown). There was no cross-reaction with other
non-RGM molecules observed (e.g., and tissue cross-
reactivity with a wide panel of human tissues). The affinity
difference between human and cynomolgus monkey RGMc
could be due to the different sequences in the binding
epitopes of ABT-207 between these two species.

Animal Studies. Single-dose studies were carried out by
dosing 200 mg/kg ABT-207 and 20 mg/kg h5F9-AM8 or vehicle
intravenously into 8-week-old female Sprague Dawley (SD)
rats. Necropsy was carried out at 4, 8, 24, 48, and 96 h and 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, and 12 weeks post injection (n=5/group). In
the dose response studies, 8-week-old female SD rats were
injected with 1, 5, 10, and 60 mg/kg ABT-207 or 0.02, 0.2, 2, and
20 mg/kg h5F9-AM8 intravenously (n=5/dose/group) with four
weekly doses. For the subchronic toxicology studies with rats

and monkeys, ABT-207 was given weekly (total, 14 times) to 8-
week-old SD rats at 2, 8, 40, and 200 mg/kg (n=15/sex/group
including 5 recovery animals/gender/group) and to 2–5-year-old
cynomolgus monkeys at 2, 8, 40, and 160 mg/kg per dose (n=6/
sex/group including 2 recovery animals/sex/group). Additional
animals from mid- and high-dose groups were kept for a 12-
week recovery phase. Detailed study designs can be found in the
supplement data.

Drug Concentration Analysis. This analysis was carried
out with Meso Scale Discovery (MSD) immunogenicity assay
using serum samples. The detailed protocol can be found in
the supplementary section.

Histology. Hematoxylin and eosin (HE) staining and
iron staining using Perl’s Prussian blue (PPB) staining method
on paraffin tissue sections were carried out using manuals
adapted from Bancroft JD (14).

Morphometrics. The morphometric analysis was carried
out using Definiens Architect software (Definiens) and
analysis was adapted according to Hall et al. (15).

Hematology and Serum Iron and UIBC. Iron parameters
(total iron and unsaturated iron binding capacity (UIBC)
(Roche Diagnostics)) in serum were analyzed using Roche’s
chemistry analyzer cobas c501 according to the manufac-
turer’s instructions. The blood parameters were analyzed
using Siemen’s ADVIA 2120.

RT-PCR. Two milligrams of frozen liver tissue was
reverse transcribed and TaqMan real-time PCR was carried
out for hepcidin as previously described (16). The rat assays
that were used were hepcidin (Rn00584987_m1, Applied
Biosystems) and beta-glucuronidase (Rn00566655_m1, Ap-
plied Biosystems) with FAM-labeled probe detection.

LC-MS/MS Analysis. Hepcidin in serum was analyzed
with protein precipitation extraction and liquid chromatogra-
phy coupled with mass spectrometry (LC-MS/MS). The
sample volume was 50 μL and the assay dynamic range was
0.5 to 250 ng/mL. Detailed protocol can be found in the
supplementary methods.

RNA Preparation and Gene Array Analysis. RNA was
prepared (n=3) (17) and microarray analysis was performed
using the standard protocol provided by Affymetrix, Inc. (Santa
Clara) and as previously described (17). The array was then
scanned using the GeneChip Scanner 3000 (Affymetrix). The
microarray scanned image and intensity files (.cel files) were
imported into Rosetta Resolver gene expression analysis
software, version 7.2 (Rosetta Inpharmatics), and analyzed for
gene expression changes versus vehicle control rat livers. The
data discussed in this publication have been deposited inNCBI’s
Gene Expression Omnibus (18) and are accessible through
GEO Series accession number GSE63200 (http:/ /
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63200).

Statistics. Experimental data from each study were tested
for normality using Kolmogorov-Smirnov test and variance
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homogeneity using Levene’s test and transformed into
logarithm scale if needed. Analyses were assessed by one-
way analysis of variances followed by Dunnett’s post-hoc test.
Statistical analyses were carried out using Graph Pad Prism 5
(GraphPad Software, Inc.) and JMP 10.0 (SAS Institute)
software.

RESULTS

Single-Dose mAbs Effect on Iron Regulation

In the single-dose studies, no effect on hematology
parameters such as the erythrocytes, white blood cells, and
hemoglobin due to the administration of ABT-207 (at a single
dose of 200mg/kg) and h5F9-AM8 (at a single dose of 20mg/kg)
antibodies could be detected (data not shown). Total iron and
UIBC parameters which were measured in serum of animals
treated with ABT-207 and h5F9-AM8 showed an increase in
serum iron and a decrease in UIBC post injection. Animals
treated with ABT-207 showed a significant (p<0.05) increase in
serum iron and a strong decrease inUIBC up to week 3, and the
UIBC level in animals treated with h5F9-AM8 stayed below the
level of detection until week 6 (Fig. 1a, b).

At the liver messenger RNA (mRNA) level, significant
hepcidin downregulation was observed in animals dosed with
ABT-207 and h5F9-AM8 until week 3 and week 4, respectively.
However, a complete downregulation of hepcidin could only be
observed in animals treated with h5F9-AM8 (Fig. 1c, d).
Similarly, serum hepcidin levels in animals treated with ABT-
207 dropped significantly until week 3, and in animals treated
with h5F9-AM8, hepcidin levels were below the level of
quantification from 24 h to week 2 post application and were
significantly decreased at least for another 4 weeks until week 6
post application (Fig. 1e, f). Serum antibody concentration was
also measured in serum of all animals involved in both studies.
The volume of distribution for ABT-207 and h5F9-AM8 are
88.34 and 62.20 mg/kg and the clearance of both mAbs are 0.22
and 0.25 mL/h/kg, respectively. The half-life of ABT-207 in rat is
approximately 11.7 days and of h5F9-AM8 is approximately
7.2 days (Fig. 1g, h and the enlarged scale of 0–96 h in
Supplementary Figure 1).

During necropsy, one part of liver and spleen tissue were
directly fixed in formalin and HE and PPB staining were
carried out. All the stained slides were analyzed by an
experienced pathologist. Based on the HE staining, changes
in iron deposition but no other changes in morphology were
observed in the examined tissue (data not shown). The semi-
quantitative examination of the iron deposition based on PPB
staining was compared to the quantitative method using semi-
automated morphometric analysis. In the ABT-207-treated
liver, iron deposition was seen between week 1 and week 9
and no evident decrease in spleen iron content was seen. The
semi-automated morphometric analysis supported the liver
iron content findings; however, at the same time, it showed a
decrease in the spleen iron content after application (Supple-
mentary Figure 2A).

The pattern of an increase of liver iron and decrease in
spleen iron content was more evident in the analysis of the
h5F9-AM8-treated animals. Liver iron content increased at

week 1 and the iron deposition was apparent until week 12
(end of study). In the spleen, iron decrease was seen between
week 1 and week 9 (Fig. 2). The semi-automated morpho-
metric analysis for this study correlated well to the spleen iron
finding, and this analysis also showed that the liver iron
content was decreasing after week 7. An intercept between
liver iron’s increase and spleen’s iron decrease was spotted at
week 10 (Supplementary Figure 2B).

Dose Response of mAbs in Selective Iron Regulation-
Related Parameters

In order to find a relationship between the dose of the
mAbs and the effect on hepcidin and iron, ABT-207 and
h5F9-AM8 were applied at different doses once weekly for a
total of four doses. Increased serum iron levels for animals
treated with ABT-207 were observed at 10 and 60 mg/kg/
week, and the UIBC level decreased at the same doses
(UIBC effect significant at 60 mg/kg/week) (Fig. 3a). In
animals treated with h5F9-AM8, a significant increase
(p<0.01) in serum iron and a decrease in UIBC level was
observed starting at a dose of 0.2 mg/kg/week and at higher
doses (Fig. 3b). As expected, the antibody concentrations in
serum in both studies were dose related (Fig. 3c, d).

In addition, hepcidin mRNA expression in liver and serum
hepcidin levels were determined for h5F9-AM8. For both
parameters, no differences were seen between vehicle group
(0 mg/kg/week) and 0.02 mg/kg/week. However, liver hepcidin
mRNA expression and serum hepcidin level decreased propor-
tionally with the dose starting from theminimal effective dose of
0.2 mg/kg/week (Fig. 4a, b). At 20 mg/kg/week, the serum
hepcidin level was below the detection limit (Fig. 4b).

To elucidate the antibody effect on genes other than
hepcidin, a whole genome transcriptomic profiling experi-
ment with liver tissue samples from this study was conducted.
The results showed that h5F9-AM8 strongly downregulated
hepcidin mRNA expression approximately 20-fold. Some
minor upregulation (2–3-fold) for genes involved in oxidative
stress protection (mostly at the 20 mg/kg dose) and minor
perturbations for select BMPs and ferroportin (Slc40a1) were
also observed (Fig. 5). Globally, a minimal number of hepatic
gene expression changes were observed (1023 probe sets with
a fold change ≥ ±2.0 and p≤0.01 for at least one rat,
corresponding to approximately 3.3% of the array).

Safety Assessment of ABT-207

The toxicological assessment of ABT-207 was done for
both males and females in rodents and in non-human
primates. Both rats and cynomolgus monkeys were treated
once weekly for 14 weeks with ABT-207 at four different
doses and kept in the recovery phase for 12 weeks. In the
rats, an increase in serum iron and a decrease in UIBC for
both males and females and a gender difference could be
observed. The males were more sensitive during the dosing
period in this study since a pronounced effect in serum iron
and UIBC could be seen between 40 and 200 mg/kg/week
dose. However, both sexes showed normalized blood param-
eters after the recovery period (Fig. 6a, c).

The observation of the iron parameters in ABT-207-
treated cynomolgus male and female monkeys during the
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dosing period was similar. An increase in serum iron and a
decrease in UIBC level could be seen at doses of 40 and
160 mg/kg/week in male and female cynomolgus monkeys,
and a total recovery could be seen after 12 weeks (Fig. 6b, d).

Evaluation of the PPB-stained tissue sections also
revealed that the iron effect, present in mid- and high-dose
groups, was not adverse and was partly reversible after the
recovery phase (data not shown).

DISCUSSION

Iron-restricted medical disorders caused by excessive
hepcidin, e.g., in ACD, iron-refractory iron deficiency anemia
(IRIDA), or anemia of chronic kidney disease, are lacking
suitable therapeutic options, and the current treatment
strategies are accompanied by undesired side effects (1). All

current approaches targeting hepcidin and bone morphoge-
netic protein receptor (BMPR) directly may have major
drawbacks due to hepcidin’s high turnover rate and BMPR’s
involvement in many other cellular processes (19,20).

ABT-207 and the affinity-matured h5F9-AM8 mAb are
mAbs targeting repulsive guidance molecule (RGM) with specific
binding affinity towards RGMa and RGMc, and this binding also
inhibits the RGMc-BMP2/4/6 interaction. These antibodies differ
in their binding affinity towards RGMa and RGMc (ABT-207 rat
KD 59 nM and h5F9-AM8 rat KD 0.24 nM) (Supplementary
Table 1).A cellular reporter gene assay, specific forRGMc-BMP2/
4, showed that IC50 for these antibodies differed approximately 50-
fold between ABT-207 (IC50 17 nM) and h5F9-AM8 (IC50

0.37 nM) (Kovac et al. submitted—under review). These data
indicate that affinitymaturation led to amore efficacious inhibition
of theRGMc-BMP-driven effects. Since it is known that BMPs are
deeply involved in iron metabolism pathway, we decided to
investigate in vivo to which extent ABT-207 and h5F9-AM8 are
involved in iron regulation.

As ABT-207 and h5F9-AM8 antibodies showed different
efficacy in vitro, single-application studies were carried out for
both antibodies. When we administrated 200 mg/kg ABT-207
or 20 mg/kg h5F9-AM8 to rats, we detected an increase in
serum iron and a decrease in UIBC (Fig. 1a, b). With ABT-
207, these differences were significant until week 3 post
injection whereas treatment with h5F9-AM8 showed a higher
magnitude and significantly longer-lasting effects up to six
weeks. Liver hepcidin mRNA expression was significantly
reduced for 8 weeks in ABT-207- and h5F9-AM8-treated
animals; however, a more pronounced effect was seen for

Fig. 1. Serum iron, serum UIBC, liver hepcidin expression (mRNA),
serum hepcidin level (protein), and antibody concentration in female
SD rats after a single 200 mg/kg ABT-207 and 20 mg/kg h5F9-AM8
application. Both mAbs were injected intravenously on day 0 and
timed necropsy of animals was carried out at different time points.
Parameters measured from rats injected with ABT-207 (left diagrams)
and h5F9-AM8 (right diagrams) include serum iron and UIBC (a, b),
liver hepcidin expression (c, d), serum hepcidin levels (e, f), and
antibody concentration levels of ABT-207 (g) and h5F9-AM8 (h) in
serum. Statistical analysis shows significant effect (*p<0.05, **p<0.01,
and ***p<0.001) from one-way ANOVA conducting Dunnett’s post-
hoc test with 0 h group as baseline. Data is displayed in mean and
error bars represent standard error of the mean (SEM)

R

Fig. 2. Perl’s Prussian blue staining on liver and spleen sections of rats dosed with ABT-207 or
h5F9-AM8. In animals treated with ABT-207, liver iron deposition (a) was visible between week 1
and week 9 and iron reduction (b) in the spleen could be seen within this time frame. In animals
treated with h5F9-AM8 (c, d), this observation is more pronounced. Bar represents 3 mm for all
panels
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h5F9-AM8. Correlating to the data on mRNA level, the
serum hepcidin protein concentration was suppressed

significantly after ABT-207 application for 3 weeks and up
to 6 weeks after h5F9-AM8 (Fig. 1c–f).

Fig. 3. Serum iron, UIBC, and antibody concentration in female SD rats after multiple dosing. ABT-207,
h5F9-AM8, and vehicle were applied once weekly for 4 weeks and animals were necropsied 24 h after final
dosing. Serum iron levels and UIBC in ABT-207 and h5F9-AM8-treated rats (a, b). Antibody drug
concentration levels of ABT-207 and h5F9.AM8 (c, d). Statistical analysis in Fig. 3a, b shows significant
effect (*p<0.05, **p<0.01, and ***p<0.001) from one-way ANOVA conducting Dunnett’s post-hoc test
with 0 mg/kg/week group (vehicle) as baseline. Data is displayed in mean and error bars represent standard
error of the mean (SEM)

Fig. 4. Liver hepcidin mRNA expression and serum hepcidin levels in female SD rats treated with multiple
doses of h5F9-AM8. Liver hepcidin expression (a) and serum hepcidin level (b) showed dose-dependent
decreases of hepcidin at doses higher than 0.2 mg/kg/week and no differences between vehicle and
0.02 mg/kg. Statistical analysis shows significant effect (*p<0.05, **p<0.01, and ***p<0.001) from one-way
ANOVA conducting Dunnett’s post-hoc test with 0 mg/kg/week group (vehicle) as baseline. Data is
displayed in mean and error bars represent standard error of the mean (SEM)
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Since our antibodies bind to RGMc and block the RGMc-
BMP interaction which induces downregulation of liver-derived
hormone hepcidin, it is very likely that iron release through
ferroportin is the intermediate step in this pathway. The data
supports the abovementioned notion that these mAbs specifically
act via the BMP-hepcidin-ferroportin pathway albeit with
different efficacy. Xiao et al. reported that hepcidin has high
turnover rate (approximately 2.3 min in cynomolgus monkeys)
(11), but the binding of our antibodies to RGMc and not directly
to hepcidin solved this issue. Due to the antibodies’ long half-lives
in rats (7.2–11.7 days), hepcidin was successfully downregulated
for several weeks and this negatively correlates with the serum
iron levels. The fading antibody effect was only seen after several
half-lives when the antibody concentration is extremely low.

In order to evaluate the dose response relationship for
ABT-207 and h5F9-AM8, dose escalation studies were conduct-
ed in rats. Antibody concentrations measured in serum samples
of all animals were dose related. In rats dosed with ABT-207, an
increase in serum iron and a decrease in UIBC were seen at a
dose of 60 mg/kg/week (NOEL=10 mg/kg). On the other hand,
in rats dosed with h5F9-AM8, these changes were already
observed at a minimal dose of 0.2 mg/kg/week (NOEL=
0.02 mg/kg) (Fig. 3). For both antibodies, a dose response
relationship could be established for the UIBC. ABT-207 had an
IC50 of 12.74 mg/kg and h5F9-AM8’s IC50 was 0.15 mg/kg, which
had approximately 80-fold difference for this parameter (Sup-
plementary Figure 3A and Supplementary Figure 4A).

With this result, we could establish a good correlation
between the in vivo and in vitro data (Kovac et al. in preparation).
Since both antibodies have comparable pharmacokinetic

parameters, the differences in efficacy in vivo are most likely
driven by the differences in their binding affinities.

In order to investigate the specificity of the antibody
effect on hepcidin expression, we chose the affinity-maturated
h5F9-AM8 antibody. A whole genome transcriptomic profil-
ing (Affymetrix) experiment was conducted. There were a
minimal number of global gene expression changes for the
NOEL (0.02 mg/kg), mid dose (2 mg/kg) and the highest dose
(20 mg/kg). The most downregulated gene in the dataset was
hepcidin, and only minor modulations were apparent with
respect to select BMPs and ferroportin (Slc40a1) (Fig. 5).

Based on this analysis, we conclude that h5F9-AM8 only
induces iron effects and only minor perturbations on the liver.
Potential toxicological consequences of excess iron may
include production of free radicals and other reactive oxygen
species. Gene expression signals indicate a minor induction of
an oxidative stress response only at the 20 mg/kg dose,
including increased GSTs and proteasome subunits. In order
to quantify the dose response effect of h5F9-AM8, we
analyzed hepcidin mRNA expression, serum hepcidin levels,
liver iron deposition, and spleen iron content. Liver hepcidin
mRNA expression and serum hepcidin level analyses re-
vealed a closely related dose-dependent decrease for both
parameters (Fig. 4). The IC50 for liver hepcidin was deter-
mined to be approximately 0.08 and 0.03 mg/kg for serum
hepcidin (Supplementary Figure 3B-C).

Under some pathological conditions (hemochromatosis),
low hepcidin levels result in increased serum iron, periportal
iron accumulation in liver, and spleen iron depletion; we asked if
this condition occurs due to the application of ABT-207 and

Fig. 5. Whole genome transcriptomic profiling with native liver tissue from animals dosed with h5F9-AM8. Comparison between liver tissue
from animals at NOEL (0.02 mg/kg/week) with 0.2 and 20 mg/kg/week is shown. Three rats per dose group (0.02, 0.2, and 20 mg/kg) were
randomly selected for gene expression analysis. A minimal upregulation of response to oxidative stress genes (p≤0.05) was apparent only at
20 mg/kg dose. Hepcidin showed a robust downregulation at the 20 mg/kg dose. Shades of green indicate a transcript was downregulated,
shades of red indicate upregulation, and black indicates no significant change (numbers indicate fold change relative to vehicle livers)
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h5F9-AM8 as well. Single-application studies with these anti-
bodies showed periportal liver iron deposition between week 1
and week 9 in animals treated with 200 mg/kg ABT-207 and
between week 1 and week 12 (end of study) in animals treated
with 20 mg/kg h5F9-AM8. We also observed reduction of iron
load of macrophages in the spleen within this time frame
(Fig. 2). The PPB-stained liver and spleen tissue sections were
quantified with a semi-automated morphometric analysis (Sup-
plementary Figure 2). This analysis supported the qualitative
histological findings confirming the stronger effect of h5F9-AM8
in comparison to ABT-207. Also in the dose response studies, a
dose-dependent iron accumulation in the liver and iron
depletion in the spleen was observed.

In order to access possible toxicological findings and revers-
ibility of the effects generated, we conducted 13-week (14 weekly
injections of ABT-207) toxicology studies followed by a 12-week
recovery period in rats and cynomolgusmonkeys. Besides the usual
assessment of toxicology parameters, iron metabolism was moni-
tored through serum iron, UIBC, and PPB staining (data not

shown). Through the toxicology studies, we could demonstrate that
ratswere themore sensitive species (UIBC IC50 12.74mg/kg/week)
compared to the cynomolgus monkeys (UIBC IC50 34.73 mg/kg/
week) (Supplementary Figure 4). The only finding induced by
ABT-207 in these studies was a dose-dependent effect of ABT-207
on iron parameters which were assessed as non-adverse and
showed reversibility for all serum parameters after the recovery
phase.

In addition, all in vivo studies did not result in test item-
related clinical signs, body weight changes, mortality, or any
other adverse findings including morphological changes of all
examined tissues. The antibody also had low immunogenic
potential (very low evidence for the development of anti-drug
antibodies (ADAs)).

CONCLUSION

In summary, we showed that both ABT-207 and h5F9-
AM8 downregulate liver hepcidin production which in

Fig. 6. Serum iron and UIBC of SD rats and cynomolgus monkeys treated with 14 doses of ABT-207 once
weekly followed by a 12-week recovery period. SD rats and cynomolgus monkeys were treated with ABT-
207 at doses of 0, 2, 8, 40, and 200 mg/kg (rats) and 0, 2, 8, 40, and 160 mg/kg (cynomolgus monkeys) for
14 weeks and subsequently kept under recovery phase for 12 weeks. Total recovery of serum iron and
UIBC was seen after 12 weeks for rats (a, c) and cynomolgus monkeys (b, d). Statistical analysis shows
significant effect (*p<0.05, **p<0.01, and ***p<0.001) from one-way ANOVA conducting Dunnett’s post-
hoc test with 0 mg/kg/week group (vehicle) as baseline. Data is displayed in mean and error bars represent
standard error of the mean (SEM)
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consequence alters iron metabolism and disposition. More-
over, this intervention is highly specific since it fits to the
RGMc-hepcidin-iron cascade (increase of serum iron,
decrease in spleen iron, and liver iron accumulation). No
adverse effects including low incidence of ADAs could be
detected in all studies conducted so far (0.025% in rats
and no incidence in cynomolgus monkeys), and all other
serum effects (serum iron and UIBC) were reversible.
Iron accumulation in liver was partially reversible. All
these outcomes point to a specific intervention on a
druggable target and open a new dimension in the
treatment of hepcidin-related anemia. ABT-207 and in
particular the h5F9-AM8 which acts as a specific and
highly efficacious antibody with a relatively long half-life
seem suitable for medical indications in which hepcidin
upregulation plays a role. Further animal studies using
these antibodies, within appropriate disease animal
models, are performed and are described (Kovac et al.
submitted—under review).
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